```
VII. PHYSICO-CHEMICAI STUDY OF MODELS OF INDOLE AKKALOIDS 1) CONPIRMATION OF THS ASSIGNGANT OF THB GBOMETKY OF THE TWO ISOMERIC 3-ETHYLIDENE 1-AYABICYCLO [2,2,2] CCTANE BY THE STUDY OF THE NUCLBAR OVERHAUSER RFPECT (NOR). J.C. MOULS,* G. Van Bingt ** and R.H. Martin ** (Recaived in UK 23 July 1967)
```

It has been show that the consideration of the intramolecular spinapin relazation path for the various protons in a molecule can lead to valuable information on its stereochemistry, particularly when the molecule has a rigid framework ${ }^{2}$)

We wish to report the application of the Nuclear Overhauser Effect ${ }^{3}$) to the confirmation of the assignment of the geometry of the ethylidene sidechain in 3-ethylidene-1-azabicyclo [2,2,2] octane (3-ethylidenequinuclidine)[1].

Both apectroscopic and chemical evidences for the existence of two isomers ($C_{9}-C_{10}$ bond cis [1a] or trang [1b] with reapect to the $C_{4}-H$ bond) have been given previously as well as first order analysises of their N.M.R. spectra at $60 \mathrm{MHz} 8,9$.

The 100 MHz spectrum (Fig.1) of a mixture of both isomers (1a/1b $=$ $70: 30$) in $\mathrm{CDCl}_{3}+10 \%$ of $\mathrm{CP}_{3} \mathrm{COOH}$ shows the signals of the $\mathrm{C}_{4}-\mathrm{H}$ as a quintuplet labelled X for the isomer $1 a, Y$ for the isomer $1 b$ and the signals of the C_{9} - Me group as a double triplet labelled A for the isomer $1 a$ and Bor the isomer $1 b$. These signala are sufficiently far apart and well resolved to expect unambiguous reaults.

In compound $1 a$, the C_{9} Me group lies close to the $C_{4}-H$ whereas in compound 1 b this $\mathrm{C}_{9}-\mathrm{Me}$ group is far away and should not contribute appreciably to the intramolecular relaxation of H_{4}. Thus H_{4} should be relaxed largely by the protons of the C_{9} - Me group in isomer la only.

[^0]

The spectrum of a mixture of $1 a+1 b$, as a $10 \%(v / v)$ solution in $\mathrm{CDCl}_{3}+10 \%(\mathrm{w} / \mathrm{w})$ of $\mathrm{CF}_{3} \mathrm{COOH}^{*}$ was observed by a frequency sweep method at 100 MHz using a VARIAN H A 100 ingtrument locking the field on the $\mathrm{CF}_{3} \mathrm{COOH}$ proton. Special care was taken to avoid paramagnetic impurities and the solution was thoroughly degased.

Irradiation of the B group at the centre of the multiplet resulted in no change of the integrated intensity of the Y group (measured relatively to the sum of the signal strength of the C and D groups; for explanation see fig. 1) whereas irradiation of the A group resulted in a positive enhancement of 31% of the integrated intensity of the X signal leaving the intensity of the Y signal unaltered.

These reaults are collected in the following table :
Intensity of ${ }^{\text {1) }}$
in arbitrary units.

Undecoupled	264	508	712	100	30
Irradiated at A 11)	256	516	712	131	30
Irradiated at B 11)	258	514	712	100	30

i) These data are the average of four different runs

1i) Data for X and Y calculated by reference to the sum $C+D$ equal to 712.

These results combined, with an unambiguous assignment of the N.M.R. spectra, confirm the conclusions reached previously 8): the major compound obtained by the Wittig reaction of triphenylethylphosphorane on 3-quinuclidone has the structure la ($\mathrm{C}_{9}-\mathrm{Me}, \mathrm{C}_{4}-\mathrm{H}$ cie).

This is another interesting example of a deshielding of a proton by a methyl group $\left[\triangle \delta\left(\mathrm{C}_{4}-\mathrm{H}\right.\right.$ in $1 \mathrm{a}-\mathrm{C}_{4}-\mathrm{H}$ in 1 b$)=0.42 \mathrm{ppm}$] when the distance between the carbon atom of the methyl group and the proton is leas than 3 a 10) (2.4 a as measured on Dreiding models) in spite of the fact that the C-H and the $\mathrm{C}_{-} \mathrm{CH}_{3}$ bonds are nearly parallel (the angle between these two bonds is about 118) .

[^1]
ACKNOWLRDOYENTS.

Our thanks are due to Dr J. FEENEY and Mias A. HEINEICH (Variall assoCIATES BNGLAND) for recording the spectra and making the double irradiation expetiments, to Dr J. OTH (UNION CARBIDE, BUROPEAN RESEARCH ASSOCIATES, BRUSSELS) for atimulating discussions, to Mr Y. MRRCK for a generous supply of part of the material used and to Prof. T. DOEHABRD for academic facilities to carry out this work.

REPERRNCES.

1. Part VI of the seriee : G. Van Binst and Y. Merck, Tetrahedron Lettere subwitted for publication.
2. F.A.L. Anet and A.J.R. Brown, J.AmeChom,Soc., 87, 5250 (1965).
3. R.H. Webb, 4m.J.Phys., 29 ; 428 (1961)
W.A. Anderson and R. Freeman, J.Chem. Phys., 37, 85 (1962).
R.A. Kaiser; J.ChemePhys., 39, 2435 (1963).
R.A. Hoffman and S. Forsen, Progreas in NMR Spectroscopy, 1,82 (1966)
4. G. Van Binst, J.C. Nouls, J. Stokoe, C. Danheux and R.H. Martin, Bull. Soc,Chim. Belges, 74, 506 (1965).
5. L.N. Yakhontov, L.I. Mastafanova, K.F. Turtchin, Yu.N. Cheynker and
N.V. Eubstov, Doklady Akgd, Nauk SSSR, 168, 1085 (1966).
10.J.M. ApSimon, W.G. Craig, P.V. Demarco, D.W. Mathieson, L. Saunders and W.B. Whalley, Tetrahedron, 23, 2339 (1967).

[^0]: * Département de Chimie, Service de Chimie Physique, Paculté Polytechnique de Mons.
 ** Service de Chimie Organique, Paculté des Sciences, Université Libre de Bruxelles, 50, Ave. F.D. Roosevelt, Brussels 5, Belgium. Inquiries should be sent to Prof. R.H. Martin.

[^1]: * Although solvents containing nuclei with high magnetic moments should be avoided in N.O.F. experiments, the use of $C F_{3} \mathrm{COOH}$ does not affect the conclusions drawn hereafter. This follows from the fact that the measurements were carried out on a mixture of both isomers in the same solution.

